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Abstract

In sections 1 and 2 we review Event Enhanced Quantum Theory (EEQT).
In section 3 we discuss applications of EEQT to tunneling time, and compare
its quantitative predictions with other approaches, in particular with Büttiker-
Larmor and Bohm trajectory approach. In section 4 we discuss quantum chaos
and quantum fractals resulting from simultaneous continuous monitoring of
several non-commuting observables. In particular we show self-similar, non-
linear, iterated function system-type, patterns arising from quantum jumps
and from the associated Markov operator. Concluding remarks pointing to
possible future development of EEQT are given in section 5.

1 Introduction

Event-Enhanced Quantum Theory (EEQT) was developed in response to John Bell’s

concerns about the status of the measurement problem in quantum theory [1, 2].

The main thrust of quantum measurement theory is to explain the mechanism by

which potential properties of quantum systems become actual. At the present time,

this is no longer an abstract or philosophical problem since it is now possible to

carry out prolonged observations of individual quantum systems. These experiments

provide us with time series data, and a complete theory must be able to explain the
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mechanism by which these time series are being generated; moreover it must be in

position to “simulate” the process of events generation.

John Bell sought a solution to the measurement problem in hidden variable

theories of Bohm and Vigier, his own idea of beables, and also in the spontaneous

localization idea of Ghirardi, Rimini and Weber [3]. More recently we have proposed

a formalism going in a similar direction, but avoiding the introduction of hidden

variables beyond the wave function itself [4, 5, 6].

EEQT offers a mathematically consistent way of coupling between a quantum

and a classical system. The classical system C is described by an Abelian algebraAc.
In this respect, EEQT is indeed an enhancement because it modifies the quantum

dynamics by adding a new term to the Liouville equation. This allows unification of

the continuous evolution of quantum states with quantum jumps that accompany

real world events. When the coupling Q− C is weak, events are sparse and EEQT

reduces to the standard quantum theory.

In this EEQT framework, a measurement process is a coupling Q − C, where

transfer of information about the quantum state to the classical recording device is

mathematically modeled by a semigroup of completely positive and trace-preserving

maps of the total system Q × C. Let us emphasize that such a transfer of infor-

mation cannot, indeed, be implemented by a Hamiltonian or more generally by any

automorphic evolution [7, 8].

To illustrate this last point, let us consider the total system Q×C described by

an algebra of operators A with center z = Ac. The center describes the classical

degrees of freedom. Let ω be a state of A and let ωc denote its restriction to Ac.
Let αt be an automorphic time evolution of A and ωt = αt(ω) the dual evolution

of states given by αtt(ω)(A) = ω(αt(A)). Each automorphism of A leaves its center

invariant, which implies that αt(ω)c = αt|z(ωc). In other words ωtc depends only

on ω0
c and the state at time t of C depends only on the part of C and not on its

extension to the total system Q×C. The result is that to have information transfer

from the total system to its classical subsystem we must use non automorphic time

evolutions.

The formal development of EEQT was inspired by the works of Jauch [9], Hepp

[10], Piron [11, 12, 13], Gisin [14, 15], Araki [16] and Primas [17, 18]. In [19, 20]

M.H.A. Davis described a special class of piecewise deterministic Markov processes

that reproduced the master equation postulated in [4]. This opened a new chapter

of EEQT and allowed for description of individual quantum systems. In [21] it was
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proven that the class of couplings considered in EEQT leads to a unique piecewise

deterministic Markov process taking values on the pure state space of the total

system Q × C. This process consists of random jumps accompanied by changes of

the classical state, interspersed by random periods of Schrödinger like deterministic

evolution. The process is nonlinear in the quantum pure state ψ and after averaging

we recover the original linear master equation for statistical states of the total system

Q× C.

The crucial concept of EEQT is that of a classical, discrete and irreversible

event. This is taken into account by including, from the beginning, classical degrees

of freedom. Once the existence of the classical part is accepted then “events” can be

defined as changes of pure state of this classical part C. In EEQT events do happen

and they do it in finite time. Rudolf Haag [22] takes a similar position and calls it

an “evolutionary picture”. According to this view the future does not yet exist and

is being continuously created, this creation being marked by events.

In EEQT we have a flow of information from Q to C and moreover a way to

calculate numbers in real experiments and to model the feedback from C to Q.

The coupling Q × C does not mean we are taking a step backward into classical

mechanics. We are only claiming that not all is quantum and that there are elements

of Nature that are not, and cannot be, described by a quantum wave function. This

assumption is confirmed everyday by experiments which clearly show that we are

living in a world of facts and not in a world of potentialities. For this aspect which is

not reducible to quantum degrees of freedom we use the term ”classical variables”.

This does not imply that we impose any restriction on their nature.

At this point we would like to emphasize a fundamental difference between the

classical variables of EEQT and the additional parameters introduced in hidden

variable theories. Hidden variable theories consider microscopic variables that are

hidden from our observation. EEQT deals with classical variables that can be di-

rectly observed. They are a direct counterpart of Physics on the other side of the

Heisenberg-von Neumann cut. Another important point is that in hidden variable

theories there is no back action of these variables on the wave function. In EEQT

we have a feedback of C on Q. EEQT can be also considered as a final result of a

decoherence mechanism as described in [23, 24]. In section 2 the mathematical for-

malism of EEQT is presented. In sections 3 and 4 some applications are described.

Concluding remarks are given in section 5.
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2 EEQT – The mathematical formalism

We will only describe the case of a discrete classical system C. It has been shown in

[25], while applying EEQT to SQUID, how to extend the formalism in cases where

the classical system C is continuous. There are two levels in EEQT - the ensemble

level and the individual level. This is in a total contradistinction to the standard

quantum theory which deals only with ensembles and even claims, rather often, that

individual description is impossible! Let us begin with the ensemble level.

First of all, in EEQT, at that level, we use all the standard mathematical formalism

of quantum theory, but we extend it adding an extra, possibly multidimensional,

parameter α. Thus all quantum operators A get an extra index Aα, quantum Hilbert

space H is replaced by a familyHα, quantum state vectors ψ are replaced by families

ψα, quantum Hamiltonian H is replaced by a family Hα etc.

The parameter α is used to distinguish between macroscopically different and non-

superposable states of the universe. In the simplest possible model we are interested

only in describing a ”yes-no” experiment and we disregard any other parameter - in

such a case α will have only two values 0 and 1. Thus, in this case, we will need two

Hilbert spaces. This will be the case when we will deal with sharp particle detectors.

In a more realistic situation α will take values in a multi-dimensional, perhaps even

infinite-dimensional manifold. But even that may prove to be insufficient.

When, for instance, EEQT is used as an engine powering Everett-Wheeler many-

world branching-tree, in such a case, α will also have to have the corresponding dy-

namical branching-tree structure, where the space in which the parameter α takes

values, grows and becomes more and more complex together with the growing com-

plexity of the branching structure.

An “event” is, in our mathematical model, represented by a change of α, α

representing a pure state of the classical subsystem C. This change is discontinuous,

is a branching. Depending on the situation this branching is accompanied by a more

or less radical change of physical parameters. Sometimes, such as in the case of a

phase transition in Bose-Einstein condensate, we will need to change the nature of

the underlying Hilbert space representation. In other cases, such as the case of a

particle detector, the Hilbert spaces H0 and H1 will be indistinguishable copies of

one standard quantum Hilbert space H.
Another important point is this: time evolution of an individual quantum system

is described by piecewise continuous function t 7→ α(t), ψ(t) ∈ Hα(t), a trajectory
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of a piecewise deterministic Markov process (in short: PDP), where periods of con-

tinuous evolution are interspersed by discontinuous catastrophic jumps.

As already pointed out above, in EEQT any non-trivial coupling of classical

to quantum degrees of freedom involves back-action of classical on quantum. This

back-action shows up in a dual way: in changes to the continuous evolution (as in

”interaction free measurements”) and also in discontinuous jumps and branchings.

It is impossible to understand the essence of this back-action without having even

a rough idea about PDPs.

Originally EEQT was described in terms of a master equation for a coupled,

quantum+classical, system; thus it was only applicable to ensembles; the question

of how to describe individual systems was open. Then, after searching through the

mathematical literature, we found that, in his monographs [19, 20] dealing with

stochastic control and optimization, M. H. A. Davis described a special class of

piecewise deterministic processes that fitted perfectly the needs of quantum mea-

surement theory, and that reproduced the master equation postulated originally by

us in Ref. [4]. The special class of couplings between a classical and quantum system

leads to a unique piecewise deterministic process with values on E-the pure state

space of the total system. This process consists of random jumps, accompanied

by changes of a classical state, interspersed by random periods of Schrödinger-type

(but non-unitary) deterministic evolution. The process, although mildly nonlinear

in quantum wave function ψ, after averaging, recovers the original linear master

equation for statistical states.

We would like to stress that, in EEQT, the dynamics of the coupled total system

which is being modeled is described not only by a HamiltonianH, or better: not only

by an α– parametrized family of HamiltoniansHα, but also by a doubly parametrized

family of operators {gβα}, where gβα is a linear operator from Hα to Hβ . While

Hamiltonians must be essentially self-adjoint, gβα need not be such – although in

many cases, when information transfer and control is our concern (as in quantum

computers), one wants them to be even positive operators (otherwise unnecessary

entropy is created).

It should be noted that the time evolution of statistical ensembles is, due to

the presence of {gβα}’s, non-unitary or, using algebraic language, non-automorphic.

The system, as a whole, is open. This is necessary, as we like to emphasize: infor-

mation (in this case: information gained by the classical part) must be paid for with
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dissipation! There is no free lunch!

A general form of the linear master equation describing statistical evolution of

the coupled system is given by

Ȧα = i[Hα, Aα] +
∑
β

g?βαAβgβα −
1

2
{Λα, Aα}, (1)

ρ̇α = −i[Hα, ρα] +
∑
β

gαβρβg
?
αβ −

1

2
{Λα, ρα}, (2)

where

Λα =
∑
β

g?βαgβα. (3)

The operators gαβ can be allowed to depend explicitly on time. While the term with

the Hamiltonian describes ”dyna-mics”, that is exchange of forces, of the system,

the term with gαβ describes its ”bina-mics” - that is exchange of ”bits of informa-

tion” between the quantum and the classical subsystem.

As has been proven in [21] the above Liouville equation, provided the diagonal

terms gαα vanish, can be considered as an average of a unique Markov process

governing the behavior of an individual system. The real–time behavior of such an

individual system is given by a PDP process realized by the following non–unitary,

non–linear and non–local, EEQT algorithm:

PDP Algorithm Suppose that at time t0 the system is described by a quantum state

vector ψ0 and a classical state α. Then choose a uniform random number p ∈ [0, 1],

and proceed with the continuous time evolution by solving the modified Schrödinger

equation

ψ̇t = (−iHαdt−
1

2
Λα)ψt

with the initial wave function ψ0 until t = t1, where t1 is determined by∫ t1

t0

(ψt,Λαψt)dt = p.

Then jump. When jumping, change α→ β with probability

pα→β = ‖gβαψt1‖2/(ψt1Λα, ψt1),
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and change

ψt1 → ψ1 = gβαψt1/‖gβαψt1‖.

Repeat the steps replacing t0, ψ0, α with t1, ψ1, β.

The algorithm is non–linear, because it involves repeated normalizations. It is non-

unitary because of the extra term −1
2
Λα in the exponent of the continuous evolution.

It is non–local because it needs repeated computing of the norms - they involve

instantaneous space–integrations. It is to be noted that PDP processes are more

general than the popular diffusion processes. In fact, every diffusion process can be

obtained as a limit of a family of PDP processes.

3 Cloud chamber model, GRW Spontaneous Lo-

calization Theory and Born’s Interpretation

In this example, we wish to account for the tracks that quantum particles leave

in cloud chambers. Physically a cloud chamber is a highly complex system. To

describe the response of the chamber to a quantum particle it is sufficient to assume

that we have to deal with a collection of two state systems able to change their state

when a particle passes near a sensitive center. Let us sketch the model proposed in

[26, 27].

Let us consider the space E = R3 as filled with a continuous medium (photo-

graphic emulsion, super-saturated vapor, etc.) which can be at each point a ∈ E
in one of two states: “on” represented by

(
1
0

)
and “off” represented by

(
0
1

)
. The set

of all possible states of the system is then 2E. But we are only interested with a

continuum of states - namely the “vacuum” (i.e. when all points of the medium are

in “off” state)- and states which differ from the vacuum only in a finite number of

points. We define ”event” to be a change of state of a finite number of points. Thus

the space of classical events can be identified with the space of finite subsets of E

from which it follows that the total system Σtot = Σq ⊗ Σc is described by families

{ρΓ} ⊂ E, Γ finite subset of E. For each a ∈ E let ga be a Hermitian bounded

operator which represents heuristically the sensitivity of the two-state detector lo-

cated at a. We can think of ga as a gaussian function gA(x) centered at x = a (other

phenomenological shapes are also possible). We denote∫
E

g2
a(x)da = Λ(x) . (4)
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The quantum mechanical Hilbert space is then Hq = L2(R3, dx). Each state ρ of

the total system can be, formally, written as ρ = ΣΓ∈SρΓ ⊗ εΓ, where, for Γ ∈ S,

εΓ =
∏
⊗a∈E

(
χΓ(a) 0

0 1− χΓ(a))

)
(5)

and where χΓ stands for the characteristic function of Γ. The Lindblad coupling is

now chosen in the following way

Lint(ρ) ≡
∫

R3

da

[
VaρVa −

1

2
{V 2

a , ρ}
]

(6)

where Va = ga ⊗ τa, τa denoting the flip at the point a ∈ R3. Let us introduce

the following notation: a(Γ) represents the state Γ with the counter at position

a flipped, i.e. a(Γ) = (Γ\{a} ∪ {{a}\}. The Liouville equation is given by ρ̇ =

−i [H, ρ] + Lint(ρ). But using the following identity in eq. (6)

VaρVa =
∑

Γ

gaρΓga ⊗ εa(Γ) =
∑

Γ

dagaρa(Γ)
ga −

1

2
{Λ, ρΓ ⊗ εa}+ (7)

we can write

ρ̇Γ = −i [H, ρΓ] +

∫
R3

dagaρa(Γ)
ga −

1

2
{Λ, ρΓ} . (8)

Summing up over Γ we get for the effective quantum state ρ̂ = ΣΓρΓ

˙̂ρ = −i [H, ρ̂]−
∫

R3

dagaρ̂ga −
1

2
{Λ, ρ̂} . (9)

Let us emphasize that the time derivative of ρ̂ depends only on ρ̂. Moreover the

effective Liouville equation is exactly of the type discussed in connection with the

spontaneous localization model of Ghirardi, Rimini and Weber [3], the difference

being that GRW considered only the constant rate case, and were simply not inter-

ested in the classical traces of particles. Indeed if, following GRW, we take for ga

the Gaussian functions:

ga(x) =

√
λ

2

(α
π

) 3
4

exp

(
−α(x− a)2

2

)
. (10)

then Λ(x) ≡ λ
2

and Eq.(9) becomes

˙̂ρ = −i[H, ρ̂] +

∫
da gaρ̂ga − λ ρ̂, (11)
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exactly as in GRW [3]. Thus we have

Theorem GRW: Ghirardi–Rimini–Weber spontaneous localization model is an ef-

fective quantum evolution part of a particular case of EEQT type coupling of a

quantum particle to a homogeneous two-state classical detector medium.

We can also construct the associated PD Markov process. We get for time

evolution observables the same equation as in (8) except for the sign in front of

the Hamiltonian. By taking expectation values we obtain a Davis generator corre-

sponding to rate function λ(ψ) = (ψ,Λψ), and probability kernel Q with non-zero

elements of Q given by

Q(ψ,Γ; dψ′, a(Γ)) =
‖ gaψ ‖2

λ(ψ)
δ

(
ψ′ − gaψ

‖ gaψ ‖

)
dψ′ . (12)

Time evolution between jumps is given by:

ψt =
exp(−iHt− Λt

2
)ψ0

‖ exp(−iHt− Λt
2
ψ0) ‖

. (13)

The PD process can be described as follows: ψ ∈ L2(R3, dx) develops according

to the above formula until at time t1 jump occurs. The jump consists of a pair:

(classical event, quantum jump). The classical medium jumps at a with probability

density

p(a;ψt1) =‖ gaψt1 ‖2 /λ(ψt1) , (14)

(flip of the detector) while the quantum part of the jump is jump of the Hilbert

space vector ψt1 to gaψt1/ ‖ gaψt1 ‖ and the process starts again. The random jump

time t1 is governed by the inhomogeneous Poisson process with rate function λ(ψt).

If the medium is homogeneous, then λ(ψ) = const = λ, and we obtain for quantum

jumps the GRW spontaneous localization model. More complete discussion can be

found in refs. [24,25].

Derivation of Born’s interpretation Let us consider now the idealized case of a

homogeneous medium of particle detectors that are coupled to the particle only for

a short time interval (t, t+ ∆t), ∆t→ 0 with intensity λ, so that λ∆t→∞. Let us

also assume that the detectors are strictly point-like that is, that g2
a(x)→ λδ(x−a).
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In this case the formula (12), giving the probability density of firing the detector at

a, becomes p(a;ψ) =‖ gψ ‖2 /λ = |ψ(a)|2 and we recover the Born interpretation of

the wave function. The argument above goes as well for the case of a particle with

spin.

4 Tunneling time

In this section we will discuss, in the EEQT framework, the following questions:

How long is the mean reflection time, that is, the mean time which an electron

spends in the barrier if reflected? How long is the mean traversal time; the mean

time an electron spends in the barrier if transmitted?

Therefore an operational definition of traversal and reflection times is used similar

to the approach of Palao, Muga, Brouard and Jadczyk [28], but we will examine

both traversal and reflection times.

Let us consider the situation in one dimension (Fig. 1), the potential is given by

V (x) =

{
V0 : 0 ≤ x ≤ dPOT
0 : otherwise

(15)

dPOT being the width of the barrier.

A detector D1 is put in front of the barrier which can detect the particle without

destroying it. A second detector D2 should be put behind the barrier.

At the beginning only the detector D1 is active. When it detects the particle at

a time t0, it turns on the detector D2 while keeping itself turned on. So the particle

must be detected first by D1 (the possibility, that D2 detects the particle before

D1 is therefore avoided). Thus the particle can be detected a second time by the

detector D1 or the detector D2. If the detector D1 detects the particle a second time

at time t1, the time difference t1 − t0 is defined as the reflection time tREF . If the

particle is detected by the detector D2 at a time t2, then the time difference t2 − t0
is by definition the traversal time tTRA.

Another possibility is, that the particle is never detected or is detected only once.

Therefore the experiment or simulation should be stopped after a finite time tCUT .

The above definitions of the traversal and reflection times are of course positive and

real.

A single run of the above experiment can be simulated by using the PDP-

algorithm of the EEQT (more details can be found in [29]). Making a lot of runs,
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the mean reflection time τR,SIM is given by averaging all runs which result in a

reflection time tREF and the mean traversal time τT,SIM is given by averaging all

times of runs, which yield a traversal time tTRA.

There exist many other approaches for calculating mean traversal and reflection

times of the interval [x1, x2] between the centers of the two detectors (for a review

see for example [30, 31, 32]).

One of these are the phase time introduced by Hartman [33], which is similar to

following the peak of the wave packet or the ”semi-classical” time, which is derived

out of the classical expressions.

Another possibility is to install an infinitesimally small magnetic field in the

range [x1, x2] and look at the rotation angle of the electron spin, this is the idea of

the Büttiker-Larmor traversal time derived by Büttiker [34].

In the Bohm trajectory approach, one can talk about trajectories of particles and

therefore there exists a clear definition of traversal and reflection times (for example

see [35, 36, 37, 38, 39]).

The mean reflection time τR,SIM computed by the PDP-algorithm of the EEQT

is compared which the results of the above approaches (the exact formulas of the

results in the other approaches can be found in [29]).

One result is, that the mean reflection time τR,SIM is mostly smaller than those of

the other approaches(Fig. 2). The reason is that the first detector cannot distinguish

whether the particle is traveling toward the barrier, or is returning from the barrier,

when it is detected a second time. So reflection times of particles, which do not

reach the barrier, are also measured.

Another question is: how the mean traversal time τT,SIM depends on the barrier

length. The phase time results for plane waves are independent of the barrier length.

This fact is called the ”Hartman-effect”. This effect was also seen in experiments

with photons (for example the experiments done by Enders and Nimtz [40, 41, 42],

done by Steinberg, Kwiat and Chiao [43] and done by Spielmann, Szipöcs, Stingl

and Krausz [44]).

Here electrons are used and an additional detector is put before the barrier in

contrast to the photon-experiments. The question then is, whether there is still

a ”Hartman-effect” or if there is no such effect due to the fact of the additional

detector.

In our simulations, the energy of the particle, the height of the barrier, and the

detector parameters are fixed and the barrier length dPOT is varied (Fig. 3(a)).
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The simulated times τT,SIM grow with increasing barrier width dPOT ≥ 3Å. With

these detectors the simulation shows no wider range of barrier width with constant

traversal times, and therefore no ”Hartman-effect”.

The simulation results and the Larmor clock results for plane waves show qualita-

tively the same characteristic: nearly the same linear growth with increasing barrier

width.

Another result is: how the mean traversal time depends on the barrier height for

very wide barriers (Fig. 3(b)).

The simulated times τT,SIM show a maximum if the barrier height equals the

energy of the incident wave packet, i.e. V0 ≈ E0. For higher barriers the traversal

time becomes smaller; smaller than the traversal time without barrier.

This fact can be interpreted in this way: that the mean “velocity” of the electron

is greater in the case of a very high and wide barrier than in the case of a free

particle. But we must remember, that up to now the formalism is non-relativistic

and a relativistic formalism would perhaps give different results.

The Büttiker Larmor approach and the “semi-classical” approach show in the

ranges V0 < 3eV and V0 > 11eV qualitatively the same behavior as our simulation:

the traversal times decrease for increasing barrier height and are also smaller for

very high barriers than the time without barrier.

Moreover there is a dependence between the traversal and reflection times and

the detector parameter. The probability of an ideal measurement in the standard

theory of Quantum Mechanics does not depend on the detector as these are only

measurements of an infinitesimal duration. For continues measurements, such a

dependence is not surprising.

5 Quantum Chaos and Quantum Fractals

When we speak about ”chaos,” we usually mean instability in the motion of most

classical systems; that is, system behavior that depends so sensitively on the sys-

tem’s precise initial conditions that it is, in effect, unpredictable and cannot be

distinguished from a random process. This kind of behavior is not to be expected

in quantum systems, essentially, for two different, yet related, reasons. The first of

these is that quantum evolution equations are linear; and the second is that Heisen-

berg’s indeterminacy smoothes out subtle intricacies of classical chaotic orbits. The

result is that there are several different approaches to ”quantum chaos”. One ap-
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proach is to study the dynamics of quantum systems which are classically chaotic;

that is to study non-stationary states. Another approach is to look at stationary

states and concentrate on the form of the wave function (or its Wigner distribution

function). Yet another approach is to concentrate on energies of stationary states,

and how the distribution of quantum energy eigenvalues reflects the chaos of the

classical trajectories (cf. [45]). Finally one can discuss the problem of algorithmic

inaccessability of certain quantum mechanical states [46].

The quantum chaos that we want to study has nothing to do with any of the

above. It is a new category, and it arose naturally out of our approach to the quan-

tum measurement problem. According to our definition: Quantum Chaos is the

chaotic behavior of quantum jumps and accompanied readings of classical instru-

ments in a particular class of experiments, namely when experiments are set so as to

perform a simultaneous, continuous, fuzzy measurement of several incompatible (i.e.

incommeasurable, or noncommuting) observables. This kind of behavior is easily

modeled in EEQT, as EEQT is the only theory (even if only semi-phenomenological)

that provides ways of simple mathematical modeling of ”experiments” and ”mea-

surements” on single quantum systems.

The example we present here, modeling measurement of spin simultaneously in

four different directions, was first introduced in an unpublished report [47] by one

of us (AJ), and then given as a subject of PhD thesis to G. Jastrzebski [48].1

Before we describe the model, and the resulting chaotic behavior and strange

attractor on quantum state space, let us make first a comment about the very ques-

tion of simultaneous measurability of noncommuting observables. This subject has

become quite controversial since the early formulation of Heisenberg’s uncertainty

relations. Mathematically these relations are precise and leave no doubt about their

validity. But, the question of how to interpret them physically and philosophically,

has become a subject of hot discussions. To quote from Popper’s ”Unended Quest”

[49]:

”The Heisenberg formula do not refer to measurements; which im-

plies that the whole current ”quantum theory of measurement” is packed

with misinterpretations. Measurements which according to the usual in-

terpretation of the Heisenberg formulae are ”forbidden” are according to

1Another, extreme, example, which leads to a random walk on a 2-sphere is discussed in Ref.
[8]
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my results not only allowed, but actually required for testing these very

formulae.”

Hilary Putnam came to a similar conclusion [50]:

”Recently I have observed that it follows from just the quantum me-

chanical criterion for measurement itself that the ”minority view” is right

to at least the following extent: simultaneous measurements of incom-

patible observables can be made . That such measurement cannot have

”predictive value” is true ...”

These words, written almost twenty years ago, suggest to us that there is some

chaotic behavior involved, and that this chaos and its characteristics ought to be

studied, both theoretically and experimentally. Yet, for some reason, either no one

noticed, or they were not interested in looking into the problem quantitatively. We

need to ask why? Perhaps for the very same reason that no one has been paying

attention to the fact that events do occur. To quote from Tom Phipps’ ”Heretical

Verities”, where he describes the publication of his paper ”Do Quantum Events

Occur” in IEEE Journal:

”Recognizing that physics and physicists were dead, I thought to

determine if electrical engineers were more alive. The answer was no . I

am currently considering appealing the matter to an unbiased audience

of farmers ... ”

Our present point of view on quantum events is rather similar to that advocated

by Phipps over twelve years ago. But, one needs more than a point of view, and,

fortunately, we also have a precise mathematical model to deal with the subject in

a quantitative way.

5.1 Tetrahedral spin model

The model was constructed to be as simple as possible, and yet interesting. The

simplest quantum system is spin 1/2, which can be oriented toward any point on

a sphere. Mathematically we are dealing with Hilbert space C2 of two complex

dimensions. Quantum states are rays in this space, thus elements of the projective

plane PC2, which is isomorphic to two-dimensional sphere S2. Equivalently, each

quantum spin state can be thought of as being an eigenstate of spin operator ~σ · ~n
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along some direction ~n. To get a simple and yet interesting behavior, we will couple

our quantum spin to four yes-no classical devices that are designed so as to make

fuzzy measurements of spin direction in four different space directions simultaneously

(and, it is no wonder that the resulting behavior of our system will be, as we will

soon see, somewhat schizophrenic!).

Why did we take four spin directions rather than two or three?

Well, for simplicity we want our directions to be symmetrically distributed. Two

directions would point to south and north poles of the sphere, and spin components

along these directions commute - thus no chaos.

Three symmetrically distributed directions would have to be distributed along

the equator, thus producing essentially one-dimensional attractor.

The simplest symmetric figure that uses all of three-dimensional freedom, and

thus produces an interesting two-dimensional attractor, is a tetrahedron! And so

we choose four unit vectors ~ni, i = 1, ..., 4, arranged at the vertices of a regular

tetrahedron

~n1 = (1, 0, 0), ~n2 = (−1

3
, 0,

2
√

2

3
)

~n3 = (−1

3
,

√
2

3
, −
√

2

3
), ~n4 = (−1

3
, −
√

2

3
, −
√

2

3
)

Details of the dynamics of our model has been described elsewhere [51]. Here we will

describe only the resulting non-linear iterated function system, with point dependent

probabilities. The four nonlinear transformations acting on a point ~r on the sphere

are

Ti : ~r 7→ ~ri =
(1 − α2)~r + 2α(1 + α~r · ~ni)~ni

1 + α2 + 2α~r · ~ni
, i = 1, . . . , 4 ,

where 0 < α < 1 is a fuzziness parameter (in the limit α = 1 the measurements are

sharp). At each step transformations Ti are chosen with point dependent probabil-

ities:

pi(~r) =
1 + α2 + 2α~r · ~ni

4(1 + α2)
.

Using the above formulas it is easy to check that each Ti indeed maps unit sphere

onto itself, that is that if ~r2 = 1 then also Ti(~r) = 1, and also that p1 + . . .+p4 = 1 .

Moreover, each Ti is one-one.

Computer simulations show that the resulting iterated function system has a

strange attractor whose fractal dimension decreases from 1.44 to 0.49 when alpha

increases from 0.75 to 0.95 [48].
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It should be noted that our iterated function system is not quite of the usual

type. Our maps Ti are not contractions - Ti contracts around the direction ~ni, but

acts as an expansion at the opposite pole. Therefore the form of point-dependent

probabilities pi is important for convergence of the iteration process.

There are two ways to visualize the attractor. The most evident one, widely used

for iterated function systems with contractive affine maps, is to use the iteration

process applied to some initial vector ~r. Fig. 4 gives an illustration of this method

applied to our case. But, because of the fact that the maps Ti are, in our case,

one-to-one and onto, we can apply here another method, that is not applicable

for affine iterated function systems. This other method consists of iterations of

the associated Markov operator P applied to some initial measure. Invertibility of

transformations Ti assures then that if the initial measure µ0 is Lebesgue continuous,

then all µn = Pn(µ0) are also Lebesgue continuous, and thus can be easily visualized

as functions µ0(x) and µn(x) respectively.

Fig. 5 show 8th iteration of the Markov operator applied to the invariant measure

on the sphere (plane view of the upper hemisphere), while Fig. 6, shows 5× zoom

of the 7th iteration .

6 Concluding remarks

In the foregoing examples, we have seen that EEQT is, indeed, an enhancement

of the standard quantum formalism, for the most important reason that it allows

us to discuss, in a quantitative way, topics that are not easily treated within the

orthodox approach: time series of events generated by individual quantum systems,

generation of cloud chamber tracks, tunneling times, simultaneous measurement of

non-commuting observables, back-action of classical variables on a quantum sys-

tem, etc. EEQT can also provide an engine powering Everett-Wheeler many-world

branching-tree.

In spite of all of these advantages and useful maneuvers, these practical appli-

cations, EEQT is still not a fully developed fundamental theory; though we are

working in this direction. One of the arbitrary factors we have to deal with is that

the coupling operators gαβ have to be cooked up in each case. In simple cases, like

those discussed in the present paper their choice is rather unproblematic, yet even

then we are not quite happy with justification of this rather than another choice.

One possible way out would be to adhere to the often expressed point of view that all
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measurements can be, in a final instant, reduced to position measurements. Then,

we can try to reduce every position measurement to sharp Dirac delta-function de-

tectors. Yet, even then, we are left with an arbitrary value of a coupling constant for

each of the point detectors. This arbitrariness, although not so much of a problem

in practical applications of EEQT (for instance, as shown in Ref. [52] , for a wide

range of values of the coupling constant, change of its value affects only the overall

normalization constant), yet it makes us wonder about the iceberg floating beneath

the tip of EEQT that we DO see?

Frankly speaking we do not know. But, from all we do know, we can speculate

about possible future evolution of EEQT. This speculation goes back more than

ten years, to a paper by one of us [53], a paper which set up the program of which

EEQT is a partial realization. Quoting from this paper:

The theory, the main idea of which we have just sketched, must in-

clude into its scope two extremely different realities: the classical world

and the quantum world. Or, making the division in a different direc-

tion: the world of matter, and the world of information. However, the

differences between these two aspects of reality are so great, that their

unification seems to be impossible without a ”catalyst”, and we guess

that this catalyst is light. (...) Coherent infra-red photon states lead to

continuous superselection rules or, in other words, algebra of observables

of the photon field has a non-trivial center, whose elements parameterize

infra-red representations. (...) Classical information is coded into the

shape of infra-red photon cloud.

Thus one of our future projects is deriving EEQT from quantum electrodynamics,

where the classical parameter enters naturally as the index of inequivalent non-Fock

infrared representations. We believe that using infinite tensor product representa-

tions of quantum systems with an infinite number of degrees of freedom, we will

arrive naturally at our gαβ operators relating to Hilbert spaces of inequivalent rep-

resentations of CCRCAR.
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Figure 1: Simulation situation
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Figure 2: Mean reflection time versus particle energy E0

simulation parameters: initial wave packet: x0 = −250Å, η = 25Å, barrier: dPOT =
5Å, V0 = 10eV , detector D1: x1 = −25Å, ∆x1 = 25Å, W01 = 0.16eV , detector D2:
x2 = 10Å, ∆x2 = 5Å, W02 = 2.56eV ;
mean reflection time τSIM,R (solid line with circles and errorbars);
phase time approach : wave packet (dotted line);
“semi-classical” reflection time : wave packet (dashed-dotted line);
Bohm trajectory approach (boxes with dashed line)
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Figure 3: Mean traversal time
simulation situation: initial wave packet: E0 = 5eV , x0 = −250Å, η = 12.5Å,
detector D1: x1 = −12.5Å, ∆x1 = 12.5Å, W01 = 0.16eV , detector D2: x2 =
dPOT + 5Å, ∆x2 = 5Å, W02 = 2.56eV ,
mean traversal time τSIM,T (solid line with circles and errorbars);
phase time approach: plane wave (crosses), wave packet (dotted line);
“semi-classical” traversal time: wave packet (dashed-dotted line);
Büttiker Larmor Time: plane wave (triangles), wave packet (small-dashed line);
Bohm Trajectory approach (boxes with dashed line)
(a) versus barrier width dPOT , V0 = 10eV
(b) versus barrier height V0, dPOT = 40Å24



Figure 4: Tetrahedral Quantum Fractal: Quantum state trajectory for α = 0.7,
1000000000 jumps.
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Figure 5: Tetrahedral Quantum Fractal: α = 0.7, Approximation to the strange
attractor. 8th power of the Markov operator applied to the uniform measure. Plane
view of the upper hemisphere. Log(1 + µ8(x)) on the vertical scale.
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Figure 6: Tetrahedral Quantum Fractal: α = 0.7, 5×zoom shows self-similarity.
Log(1 + µ7(x) on the vertical scale.
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